DataLife Engine 9.2 > Техника безопасности в химических лабораториях > Работа с вакуумными системами

Работа с вакуумными системами


19-01-2012, 21:31. Разместил: Admin

Работа с вакуумными системами

В лабораторной практике для проведения многих операций — фильтрования с отсасыванием, вакуумной перегонки, сушки в вакууме и других — требуется создать разрежение. Для этого обычно используют водоструйные насосы, позволяющие в зависимости от температуры Водопроводной воды получать разрежение в пределах 0,8—2,6 кПа (6—20 мм рт. ст.). Различные типы механических вакуумных насосов с масляным уплотнением (масляные насосы) обычно применяют для достижения остаточного давления порядка 70—400 Па (0,5—3 мм рт. ст.). Для работ требующих высокого вакуума порядка 0,133—0,133-Ю-2 Па (Ю-3—10~5 мм рт. ст.), используют диффузионные паромасляные и парортутные насосы.

Источники опасности

Опасность работы с вакуумными системами связана с возможностью взрыва стеклянной аппаратуры и, как следствие, ранения или отравления работающих вредными веществами. При создании разрежения детали вакуумной установки испытывают значительные нагрузки — до 1 МПа. Если эти детали не предназначены для работы под вакуумом или имеют дефекты, они могут быть раздавлены внешним давлением. Осколки стекла при этом разлетаются с большой скоростью и создают угрозу ранений, осббенно опасных для глаз.

Следует иметь в виду, что сила взрыва и энергия разлетающихся осколков зависят не столько от степени разрежения, сколько от объема вакуумируемой системы. Так, взрыв эксикатора вместимостью 5 л, откачиваемого водоструйным насосом, гораздо опаснее, чем разрыв колбочки вместимостью 50 мл, в которой разрежение создано с помощью высоковакуумного насоса. Поэтому не следует без особой необходимости пользоваться большими вакуум-эксикаторами, колбами Бунзена и т. п. Некоторое представление о возможной силе взрыва вакуумируемых приборов может дать приведенный ниже пример.

Аспирант В. проводил фильтрование с отсасыванием большого количества раствора. Фарфоровая воронка Бюхнера вместимостью 500 мл была вставлена на резиновой пробке в обернутую полотенцем колбу Бунзена вместимостью 5 л. После подключения системы к водоструйному насосу и достижения максимального разрежения пробка проскочила внутрь колбы и воронка с силой ударилась о горло. Раздался сильный взрыв. Колба разбилась на множество мельчайших осколков, но они остались внутри полотенца. Воронка раскололась на несколько крупных кусков, которые разлетелись в разные стороны и, по счастливой случайности, не травмировали работавших в лаборатории.. Один из осколков воронки массой И5 г ударился на излете о стену комнаты на расстоянии 5,5 мт места взрыва.

Причиной аварии послужила невнимательность аспиранта. Выбрав для работы колбу большего чем обычно размера, он не обратил внимания на то, что диаметр пробки лишь на несколько миллиметров превышал диаметр горла колба. Хотя пробка вошла в горло достаточно плотно, за счет большого диаметра горла создалось весьма значительное усилие (в соответствии с расчетом, около 19 кг), протолкнувшее пробку внутрь.

Следует отметить, что даже использование предусмотренных защитных средств (в данном случае колба была обернута полотенцем) не гарантирует полной безопасности в случае, если работники недостаточно внимательны.

Последствиями взрывов вакуумных установок могут быть не только травмы — не менее опасно попадание в атмосферу горючих или ядовитых паров, брызг едких жидкостей и т. п.

Меры безопасности

Безопасность работы с вакуумными приборами может быть обеспечена при соблюдении ряда несложных правил (меры предосторожности при вакуум-перегонке см. в разд. 10.4, при работе с ртутными вакуумметрами — в разд. 14.6).

  1. Любые работы с использованием вакуума следует обязательно проводить в защитных очках или маске.
  2. Вся вакуумная установка или отдельные ее части, представляющие наибольшую опасность лри взрыве (стеклянные емкости большого объема), должны быть экранированы проволочной сеткой или органическим стеклом. Вакуум-эксикаторы и колбы Бунзена перед работой помещают в специальные матерчатые чехлы или оборачивают полотенцем. Одной из наиболее эффективных мер предосторожности служит оклеивание вакуум-эксикаторов, стеклянных сосудов Дьюара лип-
  3. Все стеклянные детали, применяемые для сборки системы, нужно предварительно проверить: должны отсутствовать трещины, пузыри и другие видимые дефекты. Шлифы и краны необходимо тщательно очистить и смазать тонким слоем вакуумной смазки.
  4. Цельнопаяные высоковакуумные установки должны изготовлять только опытные мастера-стеклодувы. Особое внимание следует уделять снятию внутренних напряжений.
  5. Для сборки вакуумных установок нельзя использовать плоскодонные колбы и склянки, кроме специально предназначенных для работы при пониженном давлении (например, колбы Бунзена, предохранительные склянки — Тищенко, Вульфа и др.).
  6. Перед началом работы на вновь собранной установке ее необходимо испытать на герметичность и прочность при максимальном рабочем разрежении, приняв необходимые меры предосторожности.
  7. При необходимости нагрела или сильного охлаждения частей установки следует сперва создать необходимое разрежение и лишь затем приступить к осторожному нагреванию или охлаждению. Запрещается обогревать стеклянные детали работающей вакуумной установки открытым пламенем. При необходимости охлаждения морозильных ловушек жидким азотом можно использовать только предварительно испытанные сосуды из специального стекла. Запрещается использовать для охлаждения жидкий кислород или жидкий воздух, так как вследствие их чрезвычайно высокой окислительной способности велика опасность пожара или взрыва.

Детали вакуумных систем. Предохранительные склянки и клапаны

Обязательная мера предосторожности при работе с водоструйными насосами заключается в установке предохранительных склянок. Их-назначение: во-первых, препятствовать попаданию воды в вакуумную установку при внезапном «захлебывании» насоса вследствие колебаний напора в водопроводной системе; во-вторых, при случайном перебросе жидкостей-из установки препятствовать непосредственному попаданию их в водоструйный насос. Попадание воды в установку недопустимо по многим причинам; в некоторых случаях, например при перегонке под вакуумом высококипящих жидкостей, „это может привести к взрыву.

Рекомендуемые в некоторых руководствах предохранительные клапаны, в том числе поплавковые клапаны и клапаны Бунзена, недостаточно надежны и поэтому не могут служить заменой предохранительных склянок. Даже если вновь установленный клапан работает хорошо, он вскоре перестает действовать, неизбежно загрязняясь в процессе работы. Ртутные клапаны-с пористой стеклянной пластинкой более надежны, но создают значительное сопротивление току газа при вакуумировании [2].

Работа с вакуумными системами

Предохранительная склянка выполняет свои функции лишь в Том случае, если ее объем соизмерим -с объемом вакуумируемой системы. Однако слишком большая склянка» создает неудобства в работе ввиду небольшой производительности водоструйного насоса. Практически рекомендуется использовать трехгорлые склянки Вульфа или склянки Тищенко для жидкостей вместимостью около 1 л (рис. 22). Склянка Вульфа с доходящей до дна сифонной трубкой имеет преимущества при частом «захлебывании» насоса — после возобновления нормальной работы попавшая в склянку вода уходит по трубке. С другой стороны, при попадании в склянку ценной для экспериментатора жидкости (например, фильтрата из колбы Бунзена при случайном ее переполнении или перегоняемой жидкости при перебросе ее из перегонной колбы в результате бурного вскипания) она по той же трубке попадает в насос. Склянка Тищенко прекрасно выполняет функции ловушки.

При создании, водоструйным насосом вакуума в установках, содержащих бурно реагирующие с водой веществй, следует принимать дополнительные меры предосторожности. Так, при получении хлорангидридов органических кислот избыток тионилхлорида из реакционной массы рекомендуется отгонять при помощи водоструйного насоса. В подобных случаях, целесообразно использовать установку дли перегонки с вертикальным расположением холодильника (см.рис. 42): внутренний объем холодильника будет играть роль буферной емкости, предотвращающей попадание в предохранительную склянку реакционной массы при ее случайном перебросе из перегонной колбы. От проникновения паров воды из водоструйного насоса установку следует защитить с помощью дополнительной предохранительной склянки, заполненной гранулированным осушителем, например хлоридом кальция.

Определенную опасность представляет также создание вакуума с помощью водоструйного насоса в вакуум-эксикаторах, содержащих энергично реагирующие с водой осушители — фосфорный ангидрид, едкое кали и др. Недопустимо оставлять вакуумируемый эксикатор без присмотра: в случае резкого падения напора воды предохранительная склянка может переполниться и вода попадет в эксикатор, в результате чего может произойти взрыв. Впрочем, длительное ва-куумирование эксикатора с помощью водоструйного насоса не рекомендуется не только по соображениям техники безопасности. После достижения максимального вакуума движение газов по шлангу, соединяющему эксикатор и насос, прекращается (если отсутствует подсос воздуха через плоский шлиф эксикатора), и пары воды начинают поступать из насоса во внутренний объем эксикатора, что приводит к увлажнению осушаемого продукта. Поэтому после достижения максимального вакуума кран эксикатора следует закрыть. Чтобы компенсировать падение вакуума в эксикаторе, процесс следует несколько раз повторить.

Поглотительная система

Безопасность эксплуатации механических вакуумных насосов во многом зависит от правильной сборки вакуумной линии и поглотительной системы.

Работа с вакуумными системами

Поглотительная система, устанавливаемая между насосом и вакуумируемым прибором, должна, во-первых, обеспечивать надежную защиту насоса от любых паров и агрессивных газов, а во-вторых, обладать по возможности минимальным сопротивлением движению газа. Способ улавливания паров летучих веществ с помощью адсорбентов или химических поглотителей не отвечает указанным требованиям. Поскольку не существует универсального поглотителя, достаточно полное поглощение даров воды, органических растворителей и кислых газов может быть обеспечено лишь батареей из четырех-пяти колонок с различными твердыми поглотителями. Такая батарея оказывает очень большое сопротивление току газа, что снижает производительность насоса, но главное — ее приходится часто разбирать для замены или регенерации поглотителей. Однако частое демонтирование системы сопряжено не только с непроизводительными затратами труда, но и с опасностью поломки, стеклянных колонок, тем более, что для их соединения используются малоэластичные и тяжелые вакуумные шланги большого диаметра.

В последнее время в связи с доступностью твердого диоксида углерода («сухого льда») широкое распространение получили охлаждаемые ловушки (рис. 23) различных конструкций, В качестве хладоагента обычно используют смесь сухого льда с органическими растворителями, например ацетоном. Чтобы избежать бурного «вскипания» растворителя, предварительно измельченный в матерчатом мешке сухой лед небольшими кусочками добавляют к растворителю, находящемуся в ловушке или в сосуде Дьюара. Температура смеси остается постоянной до тех пор, пока в ней присутствует избыток сухого льда. Во время работы насоса следует периодически добавлять сухой лед, не допуская размораживания ловушки.

Наиболее приемлемые растворители для приготовления охлаждающей смеси — ацетон и этанол. Пожароопасные свойства диэтилового эфира не являются препятствием при его. использовании для этих целей, поскольку образующийся газообразный диоксид углерода служит отличным флегматизатором горения. Следует, однако, строго соблюдать правило: после размораживания ловушки немедленно сливать растворитель в специальную склянку с этикеткой «Охлаждающая смесь».

Совершенно непригодны для заполнения ловушек охлаждающие смеси на основе минеральных солей и снега (или дробленого льда). Так, хотя эвтектическая смесь хлорида кальция со снегом, содержащая 100 масс. ч. СаСЬ- 6Н2О и-70 масс. ч. снега, при условии предварительного охлаждения соли до 0 °С теоретически способна охладиться до—54,9 °С, ее .теплоемкость при этой температуре крайне мала и составляет лишь 17,7 кал/г. При 0 °С эта же. смесь способна поглотить 45,8 кал/г. Таким образом, охлаждающие смеси из льда и соли применимы для кратковременного охлаждения. Использование их в охлаждаемых ловушках, где требуется более длительно поддерживать низкую температуру, является самообманом. Достаточно ввести в ловушку с такой смесью термометр, чтобы обнаружить, что желаемая температура если и достигнута, то всего на несколько.минут.

Работа с вакуумными системами

Конструкция ловушки, изображенная на рис. 23 а, не лишена серьезных недостатков. При конденсации паров веществ с температурой замерзания выше ^-70 °С (при охлаждении сухим льдом) во внутренней трубке скапливаются ^кристаллы улавливаемого .вещества, что при длительной работе может привести к образованию плотной пробки, а иногда — к аварии. .Ловушка не может быть закреплена стационарно, так как для удаления конденсата ее необходимо разбирать. Если все же возникает потребность в использовании такой ловушки, следует обратить внимание на то, чтобы внутренняя трубка была достаточно широкой. Условию постоянства сопротивления движению газа отвечает отношение диаметров внутренней трубки и цилиндра 1:1,6. При работе с ловушками, имеющими шлиф, важно не допускать его контакта с охлаждающей смесью, что неизбежно, если шлиф находится внутри сосуда Дьюара. Наконец, подключение ловушки необходимо производить так, как показано на рисунке. Если же пары будут поступать сперва в узкую трубку, повышается вероятность ее закупоривания кристаллической массой.

Более безопасны и удобны ловушки, изображенные на рис. 23, б. Их вместимость от 0,5 до 1 л, расстояние между стенками 2—3 см. Ловушку закрепляют в наиболее удобном месте внутри вытяжного шкафа. Дополнительное преимущество ловушки — возможность наблюдать за ходом конденсации и состоянием охлаждающей смеси, поскольку стенки ее прозрачны.

Ловушки, охлаждаемые смесями на основе диоксида углерода, неполностью улавливают пары низкокипящих растворителей. Поэтому следует избегать использования механического насоса в тех случаях, когда можно обойтись водоструйным. Так, откачивание вакуум-эксикатора при сушке веществ от воды и органических растворителей необходимо проводить с помощью водоструйного насоса. Ошибкой является также использование масляного насоса для отгонки легколетучих органических растворителей—хлороформа, бензола, толуола. Отгонку таких растворителей необходимо проводить в вакууме водоструйного насоса и лишь после полного удаления легколетучей фракции можно подключать масляный насос.

Оценить возможность улавливания паров различных жидкостей в охлаждаемых ловушках можно с помощью табл. 3.

Практически температура охлаждающей смеси должна быть по меньшей мере на 20—30 °С ниже температуры конденсации жидкости при данном вакууме.

Необходимая площадь конденсации определяется количеством паров, поступающих в единицу времени.

Следует учитывать, что полнота конденсации зависит не только от температуры стенки ловушки, но и от скорости движения паров, интенсивности теплоотвода и т. д: Даже незначительный подсос воздуха в вакуумную систему увеличивает скорость движения паров в ловушке и резко снижает ее эффективность. На этот факт следует обратить особое внимание при использовании механических насосов для вакуумной перегонки. Регулирование давления при перегонке нередко осуществляется путем впуска воздуха в вакуумируемую систему. Кран для впуска воздуха следует располагать таким образом, чтобы воздух попадал непосредствено и ппоходил через поглотительную систему.

Работа с вакуумными системами
В противном случае при любой конструкции ловушки она практически перестает действовать.

После охлаждаемой ловушки рекомендуется установить одну колонку с гранулированным поглотителем, который выбирают в зависимости от характера работы. Если возможно попадание в вакуумную систему небольшого количества чрезвычайно вредных для насоса кислых паров, например хлороводорода, обязательно наличие колонки с гранулированной щелочью. При исправном действии охлаждаемой ловушки необходимость замены твердых поглотителей возникает весьма редко.

Сборка вакуумной линии

Взаимное расположение насоса, поглотительной системы и вакуумной установки должно обеспечить минимальную протяженность вакуумной линии. На рис. 24 изображена схема одного из возможных вариантов сборки вакуумной линии. Соединение деталей производят с помощьювакуумных шлангов с диаметром отверстия не менее 1СГ мм. Стеклянные детали прочно закрепляют в удобном месте и экранируют металлической сеткой.


Вернуться назад
Бесплатный Jz web - Позитивный портал Скачать музыку
Гц Производительность насосов водой здание то необходимо двигателя из нержавеющей стали